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DISTRIBUTION, SPAN LOADING, AND ROLLING MOMENT
DUE TO SIDESLIP AT SUPERSONIC SPEEDS FOR THIN SWEPTBACK
TAPERED WENGS WITH SUPERSONIC TRATLING EDGES AND
WING TIPS PARALLEL TO THE AXIS OF WING SYMMETRY

By Kenneth Margolis, Windsor L. Sherman,
and Margery E. Hannsh

SUMMARY

On the basis of linearized supersonic-flow theory, an analysis was
undertsken to determine the pressure distribution, span loading, and
rolling moment due to small angles of sideslip at supersonic speeds for
a series of thin, sweptback, tapered wings with wing tips parallel to the
axls of wing symmetry. Three basic series of Mach number and plan-form
combinations sre considered, all of which have supersonic trailing edges
in conjunction with one of the following: (a) both leading edges sub-
sonic, (b) one leading edge subsonic and one leading edge supersonic,
and (c) both leading edges supersonic. In addition to the Mach number
limitation resulting from the supersonic-trailing-edge condition, the
tip Mach lines mey not intersect on the wing.

Results obtained for the configuration with both leading edges sub-
sonic include formulas for the pressure distribution, span loading,
rolling moment, and the corresponding stability derivative CZB. For

configurations with a supersonié leading edge, formulas fbr the pressure
distribution are presented.

Calculstions covering a range of aspect ratio, taper ratio, Mach
number, and leading-edge sweepback are presented for wings with both
leading edges subsonic. All the wings treated showed negative values
of CIB for positive angles of attack and positive values- of CIB for

negative angles of attack.
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INTRODUCTION

A number of papers dealing with the theoretical calculations of
stabllity derivatives for thin isolated wings at supersonic speeds have
been published to date. Wing plan forms that have been treated in detail
include the rectangular, trapezoidal, triangular, and modified: forms of
the triangular wing. (See, for example, refs. 1 to 10.) An important
group of plan forms for which there are as yet incomplete date consists
of the sweptback tapered wing with wing tips parallel to the axis of
wing symmetry (usually termed "streamwise" tips for wings with zero
sideslip). The lift-curve slope Cla is covered in detail in refer-

ences 11 to 15; the damping-in-roll derivative CZP in references 11,
12, 16, end 17; the damping due to steady pitching (stabilit—y deriva-
tive Cmq) in references 17 to 20; the pltching moment due to angle of
attack (st&bility derivative Cma) in reféerences 13, 18, and 20; the
1ift due to steady pitching (st&bility derivative CLq) in references 18

and 20. Some results for the 1ift and pitching-moment derivatives pro-
duced by constant vertical acceleration (CL& and Cm&) are presented

in reference 21. References 22 and 23 treat the lateral force and yawing
moment due to steady rolling (stability derivatives CYP and Cnp)'

The present paper is primerily concerned with the rolling moment due
to sldeslip (stability derivative CZB). Reference 2L treats this deriva-

tive (and also the yawing-moment derivetive Cnﬁ) by means of the conical-

flow theory as previously utilized in references 13, 16, and 19 for other
derivatives. The analysis given in reference 24 applies specifically to
that famlily of plan forms for which all edges are subsonic, although the
equations may also be applied to wings with subsonic leading edges and
supersonic trailing edges. The development therein i1s quite complex and,
as a result, calculations are presented for only two plan forms.

The comblnations of wing plan form and Mach number considered herein
all have supersonic trailing edges in conjunction with one of the fol-
lowing: (a) both leading edges subsonic, (b) one leading edge subsonic
and one leading edge supersonic, and (c¢) both leading edges supersonic.

A minor restriction (which, for practical configurations, materially
limits the range of Mach numbers for very small aspect ratios only) is
that the Mach lines emanating from the wing tips may not intersect on

the wing.

For the configuration with both leading edges subsonic, an approxi-
mation based on Evvard's approach (ref. 25) for the tip region is utilized
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in conjunction with conical-flow results for the remaining wing region.
(See refs. 11 and 18 for anaslogous treatment of other wing motions. )
Formules for the pressure distribution, spanwise loading, and for the
stability derivative CZB are derived as functions of wing geometry

and Mach number. Numerical results are preéented in the form of graphs
showing illustrative spanwise loadings and the variation of the deriva-
tive CZB with Mach number for a range of aspect ratio, taper ratio,

and leading-edge sweepback.

" For configurations with a supersonic leading édge, expregsions for
the pressure distribution are derived for all wing regions by using
Evvard's method (ref. 26). .

SYMBOLS
Vv free—streém velocity
M free-stream Mach number, V/Speed of sound
K Mach angle .
B cotangent of Mach angle, ME -1
P density of air
AP local pressure difference between upper‘and lower surfaces

of wing, positive in sense of 1lift

| L2
Cp pressure coeff%cient, Aﬁ/zdv
¢ perturbation velocity potential evaluated on upper surface
of wing
Cy wing chord at spanwise station ¥y
b wing span
Cp wing root chord"
by taper ratio, M
Root chord
2.
A aspect ratio, EL1= zb

ep(l + )
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S wing area
n nondimensional spanwise coordinate, y
b/2
ny value of n at spanwige station where tip Mach line from
left half-wing intersects trailing edge of left half-wing,
2
_ % (B, 2"
Al + ) i § B(l-m3)
3, Brm
mp  B(L - mg)
hj value of n at spanwise station where tip Mach line from
right half-wing intersects trailing edge of right half-wing,
2
3B, B o-m _ L
my B(1+m3) A(L + )
2
_B_ B —m3
m B(l+m3)
o angle of attack, radians
B angle of sideslip, positive as shown 1n figure 1, radians
€ angle between leading edge of wing and axis of wing symmetry
(see fig. 1)
A leading-edge sweepback (see fig. 1)
s angle between trailing edge of wing and axis of wing
gymmetry (see fig. 1)
ml=B'ta.ns
my, = B tan 5]
m3 =B tan B
o geometric parameter of wing,

b AB(L + )
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Sy area of integration

_Btan(e+B) -1
B ten(e + B) + 1

Ky

B tan(e - B) + 1
B tan(e - B) - 1

_ 1 - B tan B
k3 1+ B tan B

c = Mb
2(cos B + B sin B)
d = Mo

2(cos B - B sin B)

Pgs P15, « « « Py specific points used in appendixes

X, ¥ . rectangular coordinates (see fig. 1)
s, t rectangular coordinates (see fig. 3)
g%, &' rectangular coordinates of source points
u, v oblique corrdinates (see fig. 5)
Uy, Vi oblique coordinates of field poilnts
L! rolling moment
T
ey sirfoil-section 1ift coefficient, - f © Cpax
: °yJ 1E
Cy wing ro}ling-moment coefficient, L'<%pV28b

S e b e o — e

e e e - e
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E'(ml) complete elliptic integral of second kind with

pid 2
modulus \/l - ml 5 f \/l -(1 - mlz)sinzz dz

5(m) ~ Eap)

When the subscripts I, IT, . . . XIV are used on a symbol, they
indicate different wing regions. The gymbolgs LE and TE refer to
leading edge and trailing edge, respectively.

ANATYSIS

Scope

The general plan form considered in the present paper is sketched
in figure 1; note that the wing tips are parallel to the axis of wing
symmetry (usually referred to as streamwise tips for wings with zero
sideslip). The analysis is subject to the usual restrictions and well-
known limitetions of the linearized supersonic-flow theory that are
appliceble to wings thet have vanishingly small thickness and zero
camber, that is, thin flat plates.

The range of Mach numbers considered permit the inclusion of all
plan forms provided that the trailing edge is supersonic and that the
tip Mach lines do not intersect on the wing. A general idea of the
types of plan-form—Mach line configuretions that are permltted may
be obtained from figure 2. These configurations may be divided into
three groups: (a) both leading edges subsonic, (b) one leading edge
subsonic and one leading edge supersonic, and (c) both leading edges
supersonic.

For the class of configurations with both leading edges subsonic,
expressions are derived for the pressure distribution, span loading,

rolling moment, and stability derivative CZB. Numerical results for the

span loading and stability derivative are presented in graphical form.
Tnasmuch as further calculations may be desirable, it is useful to know
the permissible range of geometric parameters and Mach number for which
these aforementioned derivations are valid. When expressed explicitly
as mathematical restrictions on the parameter B cot A, the conditions
of subsonic leading edges, supersonic trailing edges, and no tip Mach
line intersections on the wing are given as follows:



|_(l+Bta.nB)+Atan[3(l+)s._IL}-BtanB-ta.nBcotjzl
2 - tan B cot A

For AB(1 + A) 2

AB(L + A){(1 + B tan B)
4L(1L - A)(1 + B tan B) + A(L + A)(B - tan B)

SBcotAS1-Btan B - tan B cot A

[4(1 + B tan B) + & tan p(L + 2)|[1 - B tan p - tan p cot 4]

For AB(L + i) < s
2 - tan A cot A
AB(L +2){(1 + B tan B) \ < cot A S AB(1 + 2)(1 + B tan B)
(L - A)(L + B tan B) + A(L + A)(B - tan B) L(1L + B tan B) - A(L + A)(B - tan B)

For the classes of configurations with one or both leading edges supersonic, expressions
are derived for the pressure distribution.

All formules and expressions for pressure distributions, span loemdings, and momenta are
given in a body system of axes (see fig. 1). The resulting staebility derivative CIB may be

used directly in stabllity calculntions without recourge to transfer terms Inasmuch as the
derivative has the pame vaTue in either body or stability systems of axes to the second order
in o (the angle of attack).

Genersl Conslderations

rl'l'l-\ alarada Thooaad An adtla Awnat A W‘l}"ﬁﬂﬂ“"ﬂ A Tarkd
DJ-D J-D MQDOAW vl c*m GJL.D.L-U A Y GPHJ-UJ\J-M DU-L‘-‘-U-LU“D A WL WL ALD VWL U

S0a.Ly an e
potential that satisfy the well-known requirements for linearized flow (See ref, 11 for details
regerding the approximation used. )

Consider a thin wing at sn angle of attack in a sldeslipping motion. -The disturbance—

[OPRpE S Py — e ATdenad woddl Llhm mdemnwe firimeraTTor cemdPa —r o
VCJ—UL Wy _P'UUULIU.LU;-L p LU.H.'Y Ut: MH.L'UU LI'oloclLrcu
as

.I.

P
L .I.UJ-HU-LVE lJU U-A‘U:I:i SIS WA Ll LS Bulcall | uD ol Ly

8BS
wind axes ) or with respect to axes that are fixed in the body (body asxes). As indicated

4
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in reference L, for small angles of sideslip (B~<< %) the linearized *
equation for the velocity potential has the same form relative to either
gsystem of axes. The potential expressed relative to wind axes is a func-
tion of the sideslip angle B, whereas the potential expressed relative
to body axes 1s independent of sideslip. The distribution of lifting
pressure AP 1is expressible in terms of the perturbation velocities
evaluated on the upper wing surface as follows:

For wind axes (see fig. 3),

AP = 2pV (1)

&1

and the change in pressure digtribution with sideslip results from the
change\ip the potential function with sideslip.

For body axes and small sideslip (see fig. 3) the following approxi-
mate expression for AP 1s valid for wings or portions thereof that are
swept behind the leading Mach cone and are not influenced by wing-tip or
trailing-edge disturbances: -

.

AP = 2pV<§§ - %) (2)

The change in pressure distribution with sideslip results from the term
-B gg since ¢ for this approximation is independent of sideslip. The

expression for ¢ in this case is exactly that obtained for angle of
attack in the gbsence of gideslip.

For the wing configuration with both leading edges subsonic, it has
been found profitable to utilize both systems of axes in determining the
pressure distribution. For the wings with one or both leading edges
supersonic, the wind-axes system (eq. (1)) has been used exclusively to
obtain the pressure distribution. After the pressure distribution is
known, appropriate integrations will yield the spanwise-loading parameter

cy = dx
cycy /LE Cp (3)

e e o o
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and the rolling-moment coefficient

oy - [ ax dy ()
L quo/zmz:ch

The stability derivative CZB is then readily obtained:

BCZ
“p T \5 )
P/s—>o0

Detalled Considerations

Wing with both leading edges subgonic.- For the configuration with
both leading edges subsonic (see fig. 4), the wing is divided into
three regions, one region external to the tip Mach cones (region I) and

two tip regions (regions II and ITI). For small sideslip angles (B <<-§),

equation (2) is utilized to obtain the pressure distribution for region I.
(Equation (1) is also applicable, but a simpler expression equally accu-
rate to the firgt order in P 1is obtained by use of the body-axes
system.) In the tip regions, the wind-axes system is used (eq. (1)).

An spproximation for the velocity potential (based on Evvard's method,
ref. 25) which was previously used in reference 11 is modified to take
into account the sideslip condition. GSeparate derivations are required
for the two tip regions since the wing tip of region ITI acts as a leading
edge whereas the wing tip of region III acts as a tralling edge. Thus,
the pressure along the tip of region IT becomes infinite, and the pres-
sure along the tip of region IIT must be zero according to the Kutta-
Joukowski hypothesis. ’

Expressions for the pressure distribution are derived 1n appendix A
for thege three regions. Figure 5 is to be'used in conjunction with
these derivations. :

The pressure distributions have been analytically Integrated to
yield the span loading and the rolling moment. The stability deriva-
tive Ciﬁ has also been obtained. The resulting expressions are pre-
sented in appendix B. Values of the elliptic function E"(ml) (which
appears in some of the equations) are obtainable from figure 6.

Wing with one leading edge subsonic and one leading edge supersonic.-
The wing with one leading edge subsonic and one leading edge supersonic
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is shown in figure 7. Derivations of the pressure distribution for wing -
regions IV to VIIT are based on the method of reference 26 and are pre-

sented in appendix C. The pressure-distribution equation for region II,
previously derived in appendix A, is also presented in appendix C (in

the notation used for the gsupersonic-leading-edge configurations).

Wing with both leading edge supersonic.- Figure 8 presents the wing
with both leading edges supersonic. Note that, although there are nine
wing regions to be considered, there are only six regions remeining that
require the derivation of pressures; the pressure distribution for
regions IV, VI, and VIII have already been obtained in appendix C. The i
derivation of pressures for reglons IX to XIV based on the method of !
reference 26 are cerried out in appendix D. !

It should be noted that configurations with other Mach line and
plan-form combinations and with one or both leading .edges supersonic
are possible. All wing regions of such configurations, however, are
merely duplicates of those already treated in appendixes C and D. (For
example, see fig. 9.) Thus, the pressure distribution is obtained for
these wings by choosing the appropriate formmlas from appendixes C and D
for the various wing regilons.

DISCUSSION AND PRESENTATION OF RESULTS -

The derivations given in sppendixes A, C, and D ensble the calcu-
lation of the pressure distribution due to small sideslip for a glven
wing provided the wing trailing edges are supersonic, the wing tips are
parallel to the axils of wing symmetry, and the Mach lines from the two
opposite side edges do not Intersect on the wing. As has been previously
indicated, there are 1k possible wing regions formed by Mach line and
wing-edge boundaries each of which requires a separate derivation for the
pressures. If the pressure distribution is desired for a glven wing, the
wing must first be subdivided into the various regions. (For example,
see figs. 4, 7, 8, and 9.) The appropriate pressure-distribution equa-
tion must then be used to calculate the pressure in each region. For
convenience, an index to these equations 1s given in table I.

The wing plen form with both leading edges subsonic has been treated
in detail. The pressure distribution has been anelytically integrated to
yield the span loading and the rolling moment. Differentiation then
yielded the stability derivative CZB. Baged on the equations presented

in appendix B, computations have been carried out for a number of plan
forms at various Mach numbers.

Some illustrative variations of the span loading for B = 0°, 29,
59, and 10° at Mach numbers of 1.2 and 1.5 are presented in figures 10
and 11. It will be noted that there is a more or less abrupt change in
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slope at those spanwise stations where the tip Mach cones intersect
the wing tralling edge. This discontinuity in slope 1s due to the
abrupt)change in pressures across the Mach cone boundary (see refs. 11
and 13).

Variations of the stability derivative CZB with Maéh mmber are

presented in figures 12 to 16 for families of wings of aspect ratio 2,
3, 4, 5, and 6. All the wings treated showed negative values of . CZB

for positive angles of attack and positive values of CZB for negative
angles of attack. S

CONCILUDING REMARKS

On the basis of linearized gupersonic-flow theory, equations for
the pressure distribution have been derived for thin, sweptback, tapered
wings sideslipping at a constant angle of attack. The anslysis is appli-
cable to plan forms for which the wing tips are parallel to the axis of
wing symmetry and at supersonic speeds for which the wing trailing edge
is supersonic. A minor restriction is that the Mach cones emanating
from the opposite side edges may not intersect on the wing.

The plan form with both leading edges subsonic has been analyzed in
detail. Equations for the span loading, rolling moment, and the corre-
sponding stability derivative CZB have been obtained. Illustrative

span loadings and variations of the derivative CZB with Mach number

are presented for a number of wings.

Iangley Aeronautical Isboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., November 21,{1952.

e sl mm s e e e v e e e s S et e~ e mup
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APPENDIX A

DERIVATION OF EQUATIONS FOR THE PRESSURE DISTRIBUTION
FOR WINGS WITH BOTH LEADING EDGES SUBSONIC
Equations are derived for the pressure distributions for wings with
both leading edges subsonic. The plan form under consideration is shown

in figure k4.

Region I.- As given by equation (2), the expression for AP for

region I is
(&P) = 2pv<§§1 - %) (A1)

where is the velocity potential applicable to a wing at an angle
I

of attack in the absence of sideslip. From reference L, the velocity
potential evaluated at the upper surface of the wing is

_ Vm@mze - y2

E'(B tan €)

(A2)

Pr

The perturbation velocities E;E and S;E are then readily obtainable

by differentiation

Mr v tane

= (A3)
x E'(Bme)vx?mzé_yz

and

B¢I aV -y ( Al )
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Substitution of equations (A3) and (Ah) into equation (Al) and
division by %pV2 yields the pressure-distribution equation in coef-
ficient form: '

R g x tan%e + By
()I _%_pvz E'(B tan ¢) |/x2tan2¢ - y2 (5]

Region II.- It may be shown from references 25 and 11 that the
veloclty potential evaluated at the upper surface for a wing at a con-
stant angle of attack may be approximated as

.¢(S’t) ] Eff ds' at! (46)
T sy \[(s—s')z—Bz(t-t‘)z

where Sy 1s a defined region of integration, g', t' are the rectan-

guler coordinates of source points, and 8, t are the rectangular coordi-
nates of field points at which the potential is desired. The s- and t-axes
(which correspond to the x- and y-axes used in refs. 25 and 26) are wind
axes; the s-axis is alined with the free-stream velocity vector. Evvard
(ref. 25) found it convenient to use on oblique wu,v coordinate system in
which lines of constant u and constant v eare parallel to the Mach lines.
The u,v system is related to the s',t' system as follows:

'—B _M>l 1
8 _b_d(V+u) v—ﬁ(s +Bt)‘1
'_-]-- - =£ r ?
b= g - w v = gps’ - B
5 = B(w, +w) vy = o2(s + BE) o (A7)
t = —(v - uw) u, = Ei(s - Bt)
MV 2B '
2B
ds! dt' = — du dv .
M

PR e ———— e k= s e T T e e - —_ e e ®
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In the u,v notation, equation (A6) becomes

¢(uw: ) = d/p du dv (A8)
s (o - ) (v, - v)

and, when spplied specifically to region II, is

P _au (49)

IT M uw/kz \, -V k3(vw—d) ‘/uw -u

Information pertinent to the 1imits of integration and axes notation is
given in figure 5. .

Performing the integration indicated in equation (A9) yields

Differentiation with respect to s may be carried out as follows:

B¢II a¢II auw a¢II
% T % T, W (a21)

From equations (A7),

Oy M
- Os 2B
> (a12)
My M
3 ZBJ

and differentiation of equation (A10) leads to expressions for B¢II/auw
and B¢II/BVW. After the indicated operations are performed and some
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gimplification is mede, the following expression for B¢II/BS results:

' a¢II'; Va (- k.)J Ky - Uy
% |k 7B 3Ny - kv + k3d

A

U.w - k3vw + k3d.

kovy - uy (m3)

(k2 - 1){

Tt is convenient to express equation (Al3) in terms of the body-axes

veriables x and y and wing geometry. The variables wu, and v,

mey be transformed into s and t by means of equations (A7). The
variebles 8 and t are in turn related to x and y by the rotation-
of ~-axes formulas

s=xcps8 B -ysinp
(ALk)

t

x8in B+ ycos B

Combination of the two transformations given by equations (A7) and (Alk)
yields i -

_Mcos B - ‘
U = g E{(l-BtanB)—y(B+tanB?:l

| (a15)
vw=E_:-§ﬂE:(1+Btans)+y(B-tansﬂ
The constants kg, kg, and d. are expfessible as
' ~
_ B ten(e - B) + 1
k2 B tan(e - B) - 1
1l -3B tan B
k- = — ) .Al6
371+8 tan B T : (126)
d = b
2(cos B - B sin B)

e e e — e e = -
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It may be noted that, for all equations presented in both appendixes A
and B and for all equations pertaining to wings with one leading edge
subsonic, the constant k, may be written as

_ 1+ B tan(e - B)
"1 - B tan(e - B)

2

When the relations given by equations (A15) and (Al6) are used, the
expression for B¢II/BS given by equation (Al3) may be rewritten as

|
a¢II _ Vo 2 tan B x tan € + ¥y + ‘
0s 31 + B tan B|V1 + B tan(e - B) (L + tan ¢ tan B)(Q - ¥) *j
Do
2 tan(e - ) |(3 - ¥)@ + tan ¢ tan p) (a17) .
V1 + B tan(e - B) x tan € +y
From equation (1),
Prr
or
| hy E’¢IJ:"
= = == A18
(CP)II V 3s ‘ , (a28)
Substitution of- equation (A1l7) into equation (A18) yields
(CP) _ 8a tan Bf x tan € + y .
T %L + B ten g1 + B tan(e - B) J(:g-—y)(l+tanetanﬂ)

(%—y)(l+taneta.n[3)
tan(€ - B) e (A19)
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Region TIT.- The derivation of the pressure distribution for
region III is analogous to that of region II with certain exceptions.
The limits of integration for the potential are, of course, different
(see fig. 5) end the Kutta-Joukowski condition is lmposed on the
velocity a¢/as at the tip. (The tip of region III acts as a subsonic
trailing edge whereas the tip of region IT acts as a subsonic leading

edge. )

Neglecting for a moment the flow conditions at the tip results in
the following expression for the potential:

III M W—c\/V - v kv, Vi, - u
Performance of the integration indicated in equation (A20) yields
4Va kgvy - uy + €
= — + kqv, A21

Differentiation with respect to s (see egs. (All) and (Al2)) yields

+

a¢III= Vo (l+k)\/k3vw-uw+°
aB J%Bﬁ uv‘l'klvw

k
(k3 - 1) v Al (A22)
k3vw -y, +c

In order to satisfy the Kutta-Joukowski condition at the tip,

v

<B¢HI> = 0. The first radical of the right-hand side of equa-
O Ti

D

tion (A22) becomes zero at the tip whereas the second radical becomes
infinite. Reference 26 shows that the proper solution is obtained by
appropriate cancellation of the infinite velocity at the tip. The
correct expression is given asg

k - + )
a525111 Vo (1 + 1) J X (123)
as r Bx uw + klvw
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Transformation to the x,y system ylelds

a¢III _ 2Va tan(e + B) (Y + %)(l - tan ¢ tan B)
Os ﬁJ(l-Bt&nB)EBtan(€+B)+J:| x tane -y

(A2l)

/

where the parameters k; and ¢ have been replaced by
‘\

_ B tan(e +B) -1

k- =
173 tan(e + B) + 1 F

(A25)

c = Mb
2(cos B + B sin B)J

(See equations (A15) and (A16) for other pertinent substitutions.)

y PrIT

The pressure coefficient V

is then obtained

B tan(s + §) (v + )@ - ten ¢ tan p)

(%) o7 =

ﬂVT§ tan(e + B) + %](1 _ B tan ) xtan ¢ - ¥

(A26)
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APPENDIX B
FORMULAS FOR THE SPAN LOADING, ROLLING MOMENT,

AND STABILITY DERIVATIVE CZB FOR WINGS

WITH BOTH LEADING EDGES SUBSONIC

Formulas for the span loeding, rolling moment, and the stability
derivative CZB for wings with both leading edges subsonic are derived.

Span loading.- The pressure distributions given in appendix A have .
been Integrated to yleld the span loading parameter.

S | <
CZ= CPd-x Bl)
Y IE

The following formulas result:

For -1Sn< ni,

2
2
m: B™ + -
-clc—7:=2E”(m]) <—l)——-—m§—(n+1)+1 - n? +
ba B B(l -m ) o
3
m Bz + : )
=37 cogh™t e e (m+1)+ =[]+
" Pa{B(1 - m3) i
)-l-(ml +'m3)\]n 1 ll-ml ' \(m]_ )
. - nl— + 1}~
oo AB(1 + A) mp
ﬁm1J<ml +m3 + 1 - —%E—)(l - m3)
2
m- (B® + .
(n+l)—l—(——-i.ﬁ + (1 -n) (82)
B2(1 - m3) :
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For ni§n<0,

2
eyey ., bmy — om\® 2
— = 2F (ml) \[(AB(:LHU mz) n® +

Lm.
E cosh-l ————]:— m—:l (B3)

For 0Snt< nj,

cyel g my |2 o
= 2E'! + -n +
ba (m) AB(L + 1) mz:l

+ = (k)

For nj§n§l,

2
2 _
f%nz E"(ml)<@(l—n)|;T:§)]+l} -0+
m B - mg
E(l-n)|;(1+m3) + +

b J% {[ by E._+1)J3/2_
m1“3)(1+m3)]\6"l—'£ AB(L +1)  \P2

M

3/2
~ mymg bmy ol )
&l—n)(m>+l“] }+(m1'm3)41‘nl:m(1+x) C:zl+l)
Z mlm3 + +n
J‘l - ’(m) : } @)

343
3% osn-l

my

Bl
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wvhere n 1s the nondimensional spanwise coordinste j y Dy is the
b/2

value of n at the spanwise station where the tip Mach line from the

left half-wing intersects the trailing edge of the left half-wing

o -

_A@ +1) Cm (T - m3)

2
;§.+ B* + m3 -
Tz B(1 - mg)

and n4 is the value of n at the spanwise station where the tip Mach

line from the right half-wing intersects the treiling edge of the right
half-wing

2 .

B, 2T
m - B(L+'mg)|  A(L+2)
n'j - > -
. B ‘_ N
B, "B
my " B(1 + my)

Rolling moment.— Appropriate integration of the span loading
yields the rolling-moment coefficient

b/2 1 b/2 o
= - . = ’ c T 6
f b/z fLE pr i oz yey 1 dy | (B6)

where the minus sign has been introduced to maintain the usual convention
for moments. The following formula results:




i ———
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AN [t + ]
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sin
IS

magn(ag + 1) ]

| et - 1) m® - (e - 0)]m o 1)2(ar7 - ) + mmgam, + 1)(mF ¢ 2g) + oPrgP(m - 1) )
3(1 - my)® .

2
e + )
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L L RooEm e
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(Equation continued on next page)

24a

Q62 MI VOUN



e e =

—————— e

el e

\

o B 3 &g 2 . - rwi!+mt&l+_ﬂ)- L __](mtumc+1)
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- J_' - -

(m&bui+1):

\ - . ’ 2 uutc'+-;ﬂﬁ*-ﬂ
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Stability derivative Cy B~ Differentiation of equation (B7) with respect to B and
letting P approach zero ylelds the stebllity derivative Cy.t

+

o [ [l ol - - s T ) g e o) P
R G ‘ Eoutes + 2]

] a

o (ot Ym? ) vomlm® em) o ||
m? - ny =2 + 1) ||

[:‘:'!("ﬂl' ~1) + 3,7 - gy - lﬂ‘ﬁ-'l + 13(m? - mg®) + mgniy + 2)(n,3 +mg) + Pg?(ne? - 1)
- -

3 -m) ‘ oo [

3/e
sat B - oot ¢ g B(t.mqwtu~1)+(m¢+mtu)(mumc+l)
B o - 3 AL +2) AL + A ) tan ¢ i e i
x (1+m¢utp)3/2 oot B + oot p oot B +.cot R (oot B ten « + 1) 3(L -~ o0t p tam 4}
\ s
: /2
{I:ma;m‘+“12+1;l|:2(m‘:lc‘:t;;-l)+%-(cchl+mu)(nﬁtbtn.nt+lz|} I‘ 1 o nntd;eotu__ 2
tan o % - [l A(1+1)_1+
oot B + oot | ‘L B OA{L 42 ) oot © tan g + 1) 2(cot B + aot K)

(Equation continued on next page)
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. ) ) . rcnild-_,‘g -; —I\
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16 £ +“1+1)A(l+l)m.mn-l)+ m&hnc+l) r =1 1 . -lxr.lhllal —|+
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(Equation continued on next page )
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(Equation continued on next page)

92

0602 NI VOYH



25 | | bt cob € + oot bV
] wtd-ootr|[ 2 4+

|- 1 tﬂ'lmap ﬂ:ﬂ(l*"')-" T A(l+1.)f " '_1)+( 2 mbinu.'.:_)}

+ | [a |

0692 NI VOWVN

(oot & tan ¢ 4+ 1)

( 1 1
+ -
* e o\t ten ¢ + 1 l(oot.hn(-l-l)”"_l'_ -3(entb+notn)3 och bt g+l m"m"l)
B cot ® - cot
r i woib-oukdll & )+ Eb e F oot 37 1 tan « oot D tan € + 1 |43 tm « ‘{""}-m"+ = ﬂ(m‘bm‘+lﬂ
+ = (oot i tan ¢ - 1) 4+ DX E ¥ OT Hioh 5 taa ¢ 4+ 1 - R Al |
i{_l(l+l.) T JLAC1+1) 2 r]f k_.q,(‘].+:.) t AML+2) sot B + ook m

8ot b + oot )

2
_-nrbatnt+1_|rltnr +:uﬁ0t|:nt+f|

£ _mumﬂ\ Pf;

'Y} v - IYITIPES)
nLL ! - |\l + &) ©
—_tutme antutnnra-i(mumt-l}“(l"n Ll +L -t J
(cot ® tan ¢ - 1)F ok D+ ook e m(momq+17'/'
L3 ok b - oot
- ook ¢« +
Pt AL+ 2 P % —|
- oot 3 tan ¢ + eot p tan ¢ - 1) + 0ob ¢ + oot n tam r 00b B
2 AL +2) wct b + ot p \ 1 ot 1 tam ¢ _1m( R ) « n P
= Ztma oot b tm sl - 7 Sl ot 0 F et K *
LI, b 16(1 - eok L tan ¢) )
AQL + 1) z

T : ‘ ye
”: et - '“\(oat-tm--lpw(mamul)—l C..
T ey 5 D] )

e Al 4+ 1) 11 Y YOO TP -
ek | L= - =] Lo I‘\m 9 9PO ) oG RIOOF U LED W T A1) 1
+ +
t(mintm:l-rl)lfll\ -2(outb+mtl)5 LA(1+1) g juﬂbmaq-l
L iz
L +mu--ﬂ:| L {m:m:-l)+M(mtatmu+l)
AL+ 1) 1A ) ) [}
L Yy L1y 1 ,
)7 ’ St B+ a0k nkeok O fam ¢ + 1
ook p tam 0 = 1 (nib+wip)= L u [}
£ +mth-mt1 _Etln|+wtbtu(+1
1 tan « 4f1+2) Y _,9,(1+1.5 z
=t R &a * -

rar R il -
4 3lechpmoa-1r | \is(ma_,,.“u)[‘(_(li”m-h:t-1)+(m«+mn)—ma‘:n‘+]]m

al ‘ ' (Equa.tion continued on neﬁc't‘. page)

L2



e e —,

 —————————

‘|i 2 s-cate] 2 (oot ok 8 tem ¢ 4 L
|£-(1+’~)+ ] A+ 1) ““‘“-1)+(wi¢+noun)_—:|} \
(e

B{cot & + oot i )F

&—\—, wil+-—u—t—ﬂ(wtbt-|+l)}
2 tam ¢ ﬂtﬂhli-]. tan «
csb 1 tan « r

A(1+).) 1 (1.+:.) ooh B + wab p m-+m|
JI_‘ L .AZIH.S
cor g - - it;mnmc-xw+ mr.uu:uj
\ food & tan ¢ + 1)* (cot u tam ¢ - 2)
t +mta-ontt_i|_ B feowptan 4- 1)+ {eote s eoppotltane 1 v Ttane stBiame+l S |
AL +n) g A ® AL 3 muir e
8wk 3 + cob ) L (wok 5 + et p)P o0k B tan « 4+ 1) L(uutut-n«-u'

2 ] _sok ¢ + oot ¥ Al _cml_:oolg ma;m«+Mlix)
fPaaeemtp -ntutmq+l(-ntutmu-1‘“l+l - LB e o 42 u+:..)..*w.. - Hombn e - 1)— 2 -
(aﬂutul-l)'JL @t b+ @ty J (ntuinq-l)'L e T e (oot B + st p)° J-J
- - s
Btang cobbtame+liBtaac oodbtme+l (m’am:+1m°—m.+“l””

Ve T e 1 e YT )
Wost £ tan ¢ + 2 I a [ 5 oot o SEBocHE o
Btane  ootdtm ¢+ 3] lrtae AT i btan (1
AL+ 2 Ml oot 3 + ot B
. tan @ - L t e+ oot R tean ¢ wot 3
oacte tam ¢ @+| tan € oob b A(1+z.)m' *-lltotctotpung e .
oy L .. R 1l - ookn tan o/ ok B+ anbi
Ad3(L = COF P AR ¥}

ot p e« oecs T}_ﬁ(l-{»wﬁbﬁl!)_‘_u‘(”ﬁlﬁ oatly)

+ L

(8)

B - cot g tan 4PF2 (nto+mn)J(mu+mtu)3 I}Eﬁ)—(m;mc-lnmuﬂnu- -nrt:l

Equations (BT) and (B8) could be simplified samewhat but the effort involved and the
resultent saving of calculation time did not appear to Justify such asction.
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APPENDIX C

DERIVATTON OF EQUATIONS FOR THE PRESSURE DISTRIBUTION FOR WINGS WITH
ONE LEADING EDGE SUBSONIC AND ONE LEADING EDGE SUPERSONIC
Equations for the pressure distributions for wings with one leading
edge subsonic and one leading edge supersonic are derived. The plan form

under consideration is shown in figure 7.

The expression for the perturbetion potential at any point (uw, Vw)
on the wing is given by equation (A8) of appendix A.

( Vs Va du dv
Uy Vyr) = /f o =% %)

It has been shown in reference 26 (see pages 29 and 30) that the
perturbation velocity a¢/ mey be expressed as

% _ Vi Pz(u:V) dv -~ du N f(uw,v ) (C]_)
ds 2Bx Pl(u,v) Vkuw - u)(vw _ v) v ,

!

where the integral in equation (Cl) is a line integral evaluated along a
segment of the wing leading edge or edges and f(uw,vw) is a function

that can assume different values depending on the boundary conditions
imposed on the flow. The values that f(uw,vw) assumes for the purposes

of the present paper are as follows:

(a) For wing regions not influenced by a wing tip or by a subsonic
leading edge and for wing regions influenced by a wing tip wher& the
Kutta-Joukowski condition is satisfied,

f(uy,vy) =0 (c2)
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(b) For wing regions influenced by the wing tip on the right half-
wing but not influenced by a subsonic leading edge on the left half-wing,

k -4
Va, e B(VZI )
£ (tes V) = (L - ¥3) - Bg(vy - 4) (03)

(c) For wing regions influenced by & subsonic leading edge on the
left half-wing but not influenced by the wing tip on the right half-wing,

(Ck)

() For wing regions influenced by both a subsonic leading edge on
the left half-wing and the wing tip on the right half-wing,

£ (U Vi) = ]Z_: (2 - x3)

(The terms right half-wing and left half-wing refer to those portions
of the wing plan form that are in the (x,y) quadrant and in the (x, - y)
quadrant, respectively. (See fig. 1.))

The pressure coefficient is related to the velocity Op/ds as
follows:

or by using equation (C1)

PZ(qu)
- b v - % 2 £ (uy, (c6)
Cp ZBjt\/rjl(u’v) \K’w =~ V)(uw ) ¥ (uw Vi)




NACA TN 2898 ] 31

Equation (C6) gives the pressure coefficient in the u,,v, coordi-

nate system which is related to the x,y body-axes system of the present
report by equations (AlS) of appendix A. Inasmuch as it is more con-
venient to use the body-axes system in determining loadings and moments,
the final expressions for Cp are given in the x,y notation.

The expressions for the pressure coefficients for regions IV to
VIII (see fig. 7) may now be derived by using equations (C6), (A15) and
the appropriate value of the function f(uw,vw) as given by equa-

tions (C2), (C3), (Ch), and (C5).

Region IV.- Region IV is the hatched portion of the wing shown
below.

Point u coordinate v coordinate

Po Uy h2*s
Py uy Uy /%y

P2 “kyvy Y
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Inasmuch as region IV 1s not influenced by elther wing tip or by the
subsonic leading edge on the left half-wing, the appropriate value of
f(uw,vw) is given by equation (C2). When the procedure given in refer-

ence 26 is followed and the appropriate relations and limits are substi-
tuted into equation (C6), the expression for the pressure coefficient in
region IV may be written as follows:

o 20, (1 + xy)av , (c7)
Celry = o /kl\[v - ) (uy + Epv)

Performance of the integration indicated in equation (C7) yields

20 kl +1 -

(°®)y = 5 I (c8)

Region V.- Reglon V is the hatched portion of the wing shown below.

e
"
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Point u coordinate v coordinate
PO uw Vi
51 Kyug ke uy /%2
P2 kv Vi -
' ,
P3 Uy uy [ko

Inasmuch as region V is influenced b& a subsonlc leading edge on the
left half-wing, equation (Cli) gives the appropriate value of f(uw,vw).

Upon substitution of the proper functional relations and limits into
equation (C6) the pressure coefficient is given as

~
v, k l)dv
(CP)\}=%J%/‘W (1+\) +(l_ki (c9)
Uy /K2 «uw+klv)(vw - v) 2

Performing the integration indicated in equation (C9) and application
of equations (Al5) yields

l:(1+%)(1'-3m5)-k1(1+3maz[ - [:(1+%)(B.+tanﬂ)+kl(3-tnnﬂ§ly
&Lkli-l 1

' cP) - = cos +
: (ely ™ & Ve _ Bl-B'ba.nB)+kl(1+BtanBE]x+|:k1(B-ta.nﬁ)-(B+tanazly
[ (1+;—;—)(1-B'ta:nﬁ)x—<l+ﬂ)(3+tanﬁ)y
badp -1 : *2 (c10)
B

(L+B tan p) - (1L - B tan p)|x + | (B - tan B) + 1(B + tan )|y
k2 k2

'
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Region VI.

below.
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~ Region VI is the hatched portion of the wing shown

Point u coordinate v coordinate
Po Uy Vir
Py .uw Uk
Py k3(vW - d) —

’ -1
Py - k3(vw - ) v,

LRegion VI is influenced by the wing +1i
fore, the appropriate form of f(u‘,;,vw

substitution of limits and relations into equation (C6), the pressure

coefficient in region VI is given by

on the right half-wing; there-

is glven by equation (C3).

Upon



& s mmme memam 4 A ks m — o = oy A e

~ ~
-k (v,d) | .k ¥y - d)
k v Vi 3 X
Vi Bx _;E ﬁuw + klv)(vw - v) Y 7 53(Vw
1
- N,

Performing the integration indicated in equation (C11) ard application of equations (Al5) yields

r -

Eb
(kl +_]:3)(l + B tan B)x + (kl + k3)(B - tan f)y - =
on K + 1 2 ‘ cos“p(1 + B tan p)
() =F = 1~ -+
vt __® o)
' ‘ coszﬂ(l + B tan B)\Z
: L . y
k k
(l+—§-)(l+]3tan}3)x+(1+—§)(B—tan5)y-‘ Eb
k1 k) ky cos®8(l + B tan B)
- xy) (c12)
2B

cosZB(1 + B tan s)(% i y>
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Region VII.- P 1 VII 1s-the hatched portion of the wing shown
below. )

Point u coordinate v coordinate
Po Uy Vi

Py Kyuy k2 U/

Py Ik3(vw- - d) k3 (:rzl' d).
Py kg (v - d) Vi

Py Uy vy /2




Reglon VII is influenced by both the wing tip on the right half-wing and by the subsonic
leading edge on the left helf-wing; equation {C5) gives the proper value of f(uw,vw). Substi-

tutien of limits and functional relations inte equation (C6) ylelds

- ‘ ~
/"-::3(vv-d) [ Xy (7 - 4) kll\f—l
(@) = d k f (x + Dav Lia ) TR om-1[M'g (13)
= —_— + — - + > C
A e PR RO OE B.“[ s Tt - ) JEJ
T | s
\, ) .

Pérformence of the integration indicated in equation (C13) and the use of equations (Al5) yields

|_/'|4._E:\(1_-B__p_ B) - 1;_.3@5] !I_/1+$\(B+m
kb +1 -ZLL\

(Cp) gy = 22
VIL B Vh‘—l [1 Bta.na)+k1(1+Btanp:|x+E:1(B-tma)—(B+ta.na:|y

_lhgkz-llr (]:+-:2}-)(l-3tanﬁ}x—(l+;—;)(3+tanﬁ)y_
Bx kg ‘ 1 : 1

\‘|:(l+Bta.nB)-—(l-Bta{1ﬂ]x+|:(B-ta.nﬁ)+-——(}3+tanﬂz|y

T kp
2Ri,d
Rl (}:1+k3)(l+]3hmﬁ)x+(k1+k3)(3-tanﬁ}y-uwzB+
O B o)
0osZB(L + B tan p)'\%

" <1+;3-)(1+Btanﬁ)x+(l+:—i)(n-ta.nﬂ)y-m 3[3
E(l-ka) : (o1k)

£8 fb _ y)
c0s2p(1 + B tan p)\2

Q6QZ NIL VOVN

LE
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Region VIII.- Region VIII is the hatched portion of the wing shown

below.

Point u coordinate v coordinate
Po Uy Vi
b, (% - ©) i
-k3 . k3
P2 vy Vi
P3 u, . uwk“ °
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Region VIIT is influenced by the wing tip on the left half-wing, which,
because of the flow inclination caused by sideslip, has the character-
istics of a subsonic trailing edge. Inasmuch as application of the
Kutta-Joukowski condition at the tip is desired, equation (C2) must be
used to obtain f(uw,vw) for this region. Upon substitution of the

appropriate limits and relations in equation (C6) the pressure coef-
ficlent in region VIII is given by

() _za MV (k7 + 1)dv (c15)
VITE % fuy-c (1w + kqv) (v - v) |
. k3

Performance of the integration indicated in equation (C15) and application
of equations (Al5) ylelds

2k;B m, y)
(CP) _ b B +1 tan-1 . cos?B(1 - B tan B)\z
VIIT 3Bx " )
fia (1+ﬂ)(1-3tans)x-(1+ﬂ)(3+ta.nﬁ)y- L
k3 . k3 cos?B(1 - B tan B)

(c16)

Region IT.- The expression for the pressure distribution for
region II (see fig. T) has been derived in appendix A (eq. (A19)). For

purposes of completeness, equation (Al9) is given below in the notation
used in this appendix. -

zB e
(CP) Lbakp -2 cos?8(1 + B tan p)\2

II Bt kp 1 1 i
,I}1+Bma)-g(1-3maﬂx+[} —tanB)+g(B+ta.nﬂE|y

(1 +3B tan B) -l(l-Bumaﬂx+ E -m-s)+L(B+tanaE|y
les * ‘ - * (@)
B " 3) ~ 2B /E_y)‘ T
cos28(1 + B tan p)\2 ’
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APPENDIX D g

DERIVATION OF EQUATIONS FOR THE PRESSURE DISTRIBUTION

FOR WINGS WITH BOTH LEADING EDGES SUPERSONIC

Equations for the pressure distribution for wings with both leading
edges supersonic are derived in this appendix. The plan form under con-
gideration is shown in figure 8. The method used in appendix C for
deriving the pressure formulas is also applied to this mnew class of
wings. Actually, regions IV, VI, and VIII (see fig. 7) have already
been treated in appendix C. The formulas for the pressure coefficients
are given by equations (C8), (C12), and (C16). Corresponding results
for the remaining wing regions are derived in this appendix by using
equations (Al5) of appendix A and equations (C2), (C3), and (C6) of
appendix C.

Region IX.~ Region IX is the hatched portion of the wing shown
below.
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Point u coordinate - v coordinate
0 0] 0

Po Uy Vi

P1 % /%2
P2 ~ky vy Vi

Inasmuch as region IX is not influenced by either wing tip, equa-
tion (C2) gives the proper form of f(uw, ) for this region.

Substitution of proper limits and relations into equation (C6)
glves the following equation for the pressure coefficient:

_ o (2 + 1) _
= 24 2_— ) k‘Z i kl + 1)dv
(%) s 0 ‘/(uw - u) (Vw f \/(Uw + k) (v = V)

(o1) |

Performance of the integration indicated in equation (D1) and appli-
cation of equations (Al5) yields

Iy + 1 E:2(1+B'ba.nﬂ)-(l-Bta.nB]x+E:2(B-tanB)+(B+tanB]y

E{2(1+Btan]3)+(l—Bta.nBi|x+EIZ(B-ta.nB)a-(B+ta.nB:|

kl+i a1 l’_(l‘BtﬁnB)‘-kl(l+BtanBZ|x‘- BB+t§.na)+k1(B-tanB:)]y

Yy : Ecl(1+ﬁtana)+(1-3tansﬂx+E;l(B-tanB)—(;3+tanaily

(p2)
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Region X.- Region X is the hatched portion of the wing shown "
below. ’

Point u coordinate v coordinate
0 o 0
Po Uy Vu
Py Wy oy, /kp

Ka(v., - 4
3(Vw - 4)

P2 k3(vW - d) T kq
P3 k3 (VW - d) ] 'V'W

Since region X is influenced by the right wing tip, the proper velue
of f(uw,vw) . is given by equation (C3). Substituting the appropriate
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limits and relations into equation (C6) gives the following equation
for the pressure coefficient in region X:

kz il du . '(VW-d)k3

L2 | TR (¥ + 1)av .
x an \/( ) B o ' ) _v>

u, - u)v+

X vy - 4d
Yy 3 Xk .
-]l;ﬁ(l - k3) L ' (p3)
N (- )

Performance of the integration indicated in equation (D3) and a.pplication
of equations (Al5) yields

K + 1 E:z(l+Bta.nﬁ)—(l Bta.nB:Ix+E:2(B-tanB)+(B+tanﬁ:ly

E:z(l+BtanB)+(l BtanB]x+|:k2(B-tanB)-(B+tanB]y

X +1 1[(1 Bta.nB)—kl(l+Bta.nB]x-EB+ta.nB+kl(B—tanﬂ:|y

2,
—_— co
B @ +Btans) s (- BtanB:IX+E:1(B-tanB)-(B+t&nB]Y
Xy + k2)(1 + B tan B)x + (kq + k3)(B - tan Bly - Bb

Ek1+1m_l<l 3) (k1 + x3) cos?B(1 + B tan B)
! 28 &-v)

coszﬁ(l + B tan B)\2

(1+;§)(&+Bta.nﬂ)x+(1+;3->(B-tanﬁ)y— > EBb
by 1 1 k7 cos“B(l + B tan B)
ﬁ( - k) 2B ) )
cos2B(1 + B tan p)\2

(pt)
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Region XTI.- Region XI is the hatched portion of the wing shown
below.

Point u coordinate v coordinate

Po W, Ve

Py Uy Uyl
ko(v, - d

o | e | e

Py k3(vw -/d) Vo

As region XTI is influenced by the wing tip on the right half-wing, the
correct form of f(uw,vw) is given by equation (C3). Substitution of



At e .

the proper 1imits and relation into equation (C6) givea the following equation for the preasure =
coefficient in region XI: §
=
Y]
Ky +1 | k(v - 4) g
2 . bt -
(CP)XI = E% . 0 + ﬁ;(l - k3) " d) (D5)
a R O B e

Performance of the integration indicated in equation (D5) and application of equations (AlS)

wialdc

o il

ﬁ'El‘Btﬂ-ﬂB)+kz(l+Btanﬂﬂx-EB+tanﬂ)+(k2:l—Ek3)(B—ta.nB)y+ EEb
(%>n=%”"}_i1£-%wﬂ'l = — ' ]:‘”zﬂ(“mﬂ’
V52 l_ Ez(l—F’Bta.nB)+l-Btmﬂ_|x+Lkz(B-ta.nP)-(B-i-tanﬁﬂy J
'<1+;z3—/(;+13m_ng);z_+(;+:1—2>(_B-t.a_ng)y- = L .
%(1 - k3) : i — ko cos“A(1 + B tan B) . | N (06)

Sh



L6

below

NACA TN 2898

Region XII.- Region XIT is the hatched portion of the wing shown

Point u coordinate ~ v coordinate
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Inasmuch as region XII is not influenced by either the right or left
wing tip, equation (C2) gives the correct value for f(uw,vw). The

proper substitutions of limits and relations into equation (C6) give
the following equation for the pressure coefficient in region XII:

_ 20 [Mw (kp + L)du
(CP)XII kZBﬂszvw \/(uw " u)(vw " %12_) (07)

Performance of the integration indicated in equation (D7) yields

R i ~ < (p8)

Pl =%

Region XTITII.- Region XIIT is the hatched portion of the wing shown
below.

:-é
»

X 7
ER
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Point u coordinate v coordinate
Po e Yy
N ey - ©) -
k3 3
P2 | Koy Vi
Py Uy uwk; - ‘

Region XIII is influenced by the left wing tip which, because of
the asymmetric flow caused by the sideslip, has the -characteristics of
g subsonic trailing edge. Inmasmuch as the Khtta-Jbukowski condition is
to be satisfied at thils tip, the correct form of f(uw,vw) is given by

equation (C2).
The substitution of appropriate limits and relestions into equa-

tion (C6) glves the following equation for the pressure coefficient in
region XIIT:

Uy=C ‘
(CP) e L ks (kz + l)dv

ML 2wy |y + kv)(vy - V)

(D9)

Performance of the integration indicated in eqpation (D9) and the appli-
cation of equations (Al5) yields

i b
(1+k2>(1-13ma)x-(1+-:£)(B+1mp)y- X2
kp + i 2. 5, 3 cos?B(1 - B tan B)
) = 2 1 -2 tan1
O~ 22 -2
7).

+
coB B(l B tan ﬂ)\z

(p10)
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kg

Region‘XIV.- Region XIV is the hatched portion of the wing shown

below.

Point u coordinste v coordinate ‘
0 0 0
P0 “w v‘w
5 k(v - ) uy - ¢
1 -
k3 k3
Py kg vy Vo
u, - ¢
P3 u, k3

. — e e~ e =
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Region XIV is influenced by the left wing tip. Inasmuch as the
Kutta-Joukowski condition is imposed at this tip, equation (C2) gives
the correct form of f(%,vw). Substitution of the proper limits and

relations into equation (C6) gives for the pressure coefficient in
region XIV.

uw-c .
_ 2a i (kp + 1)av . Vi (k + )av
(CP)m Bxt s/; ’ \/(uW + kov) (v - v) 0 \/(uw + klv)(vw - v)

‘ | (p11)

Performance of the integration indica.ted in equation (D11) and appli-
cation of equations (A15) ylelds

E:z(l+BtanB)—(l Bta.nB:Ix+E:2(B—tanB)+(B+ta.nﬂ:|

(%) ., = 2 22" con :
X Brfi E2(1+Bta.nﬁ)+(l BtanB:!x+E:2(B~tanB)—(B+tanB:|
gy + 1 [l-BtanB)-kl(l+Btanﬁ:Ix—[(B+ta.nB)+k1(B—tanB:’y
— cos
B iy [l(l+BtanB)+(1-Bta.nﬁ:lx+E{l(B—tanB)+(B+ta.nB:|y
<l+k—2-)(l—Btth)x—(l+&)(B+tanB)y- e
okt k3 k3 cos®B(1 - B tan B)
B \fip ZlkpB /1_;+y)
cos?B(L - B tan p)\2

(p12)

=3
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INDEX TO PRESSURE COEFFICIENTS FOR

VARIOUS WING REGIONS

Wing regiont Equation for Cp | Page
I (a5) 13
I (a19), (c17) 16,39

11T (A26) 18
v (c8) 32
v (c10) 33
VI (c12) 35
VII (c1k) 37
VIII / (c16) 39
IX (p2) L1
X (D) 43
XT (D6) L5
XIT (p8) b7
XIIT (p10) 48
XIV (p12) 50

‘JWing regions are identified in figures 4, 7, 8, and 9.
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Flgure 2.- Effect of Mach number on the Mach line—plan-form configuration

for a glven wing with an angle of sideslip of 3°. Dashed lines ere
Mech lines,
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Figure 3.- Relationship between the s,t wind- axes system and the x,y bedy-
exes gystem, 8 =xco8 B -y e6in B; t = x sin B + ¥y cos B;
"x=Bcos B+ tsslnp; y=-88lnp+tcos B. -
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Figure L.- Wing regions for the plan form with both leading edges
Dashed lines are Mach lines.
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Figure 5.- Information pertinent to the derivation of the potentials for
wing regions II and III. (Bee appendix A.)
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L. O~

£°(m) -6

Figure 6.- Variation of the elliptic function E' '(ml) with m.



Figure 7.~ Wing regione for the plan form with one leading edge subeonic
and one leading edge supersonic. Dashed linee are Mach lines.
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Flgure 6.- Wing regions for the plan form with both leading edges super-
sonic. Dashed lines are Mach lines.
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Y

Flgure 9.- Wing regions for some additional Mach line-plan-form configura-
tions. Dashed lines are Mach lines.
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Aspect ratio, 2; leading-edge sweepback, 60°; taper ratio, 0.25;

Mach number, 1.5.
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